Space Efficient Algorithms for Series-Parallel Graphs
نویسندگان
چکیده
The subclass of directed series-parallel graphs plays an important role in computer science. To determine whether a graph is series-parallel is a well studied problem in algorithmic graph theory. Fast sequential and parallel algorithms for this problem have been developed in a sequence of papers. For series-parallel graphs methods are also known to solve the reachability and the decomposition problem time efficiently. However, no dedicated results have been obtained for the space complexity of these problems – the topic of this paper. For this special class of graphs, we develop deterministic algorithms for the recognition, reachability, decomposition and the path counting problem that use only logarithmic space. Since for arbitrary directed graphs reachability and path counting are believed not to be solvable in log-space the main contribution of this work are novel deterministic path finding routines that work correctly in series-parallel graphs, and a characterization of series-parallel graphs by forbidden subgraphs that can be tested space-efficiently. The space bounds are best possible, i.e. the decision problems is shown to be L-complete with respect to AC0-reductions, and they have also implications for the parallel time complexity of series-parallel graphs. Finally, we sketch how these results can be generalised to extension of the series-parallel graph family: to graphs with multiple sources or multiple sinks and to the class of minimal vertex series-parallel graphs.
منابع مشابه
Space efficient algorithms for directed series-parallel graphs
The subclass of directed series-parallel graphs plays an important role in computer science. Whether a given graph is series-parallel is a well studied problem in algorithmic graph theory, for which fast sequential and parallel algorithms have been developed in a sequence of papers. Also methods are known to solve the reachability and the decomposition problem for series-parallel graphs time ef...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملParallel Algorithms for Series Parallel Graphs
In this paper, a parallel algorithm is given that, given a graph G = (V;E), decides whether G is a series parallel graph, and if so, builds a decomposition tree for G of series and parallel composition rules. The algorithm uses O(log jEj log jEj) time and O(jEj) operations on an EREW PRAM, and O(log jEj) time and O(jEj) operations on a CRCW PRAM (note that ifG is a simple series parallel graph,...
متن کاملDistributed-Memory Parallel Algorithms for Counting and Listing Triangles in Big Graphs
Big graphs (networks) arising in numerous application areas pose significant challenges for graph analysts as these graphs grow to billions of nodes and edges and are prohibitively large to fit in the main memory. Finding the number of triangles in a graph is an important problem in the mining and analysis of graphs. In this paper, we present two efficient MPI-based distributed memory parallel ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001